a2 United States Patent
Curley et al.

US009459997B2

US 9,459,997 B2
Oct. 4, 2016

(10) Patent No.:
45) Date of Patent:

(54) ERROR INJECTION AND ERROR
COUNTING DURING MEMORY SCRUBBING
OPERATIONS

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: Lawrence D. Curley, Endwell, NY
(US); Glenn D. Gilda, Binghamton,
NY (US); Patrick J. Meaney,
Poughkeepsie, NY (US)

(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 217 days.

(21) Appl. No.: 14/266,984

(*) Notice:

(22) Filed: May 1, 2014

(65) Prior Publication Data
US 2015/0318058 A1~ Now. 5, 2015

(51) Imt.CL
G1IC 29/10 (2006.01)
GO6F 12/02 (2006.01)
GO6F 11/26 (2006.01)
G1IC 29/02 (2006.01)
G1IC 29/44 (2006.01)
GOGF 11/263 (2006.01)
GOGF 11/10 (2006.01)
GlIC 11/41 (2006.01)
G1IC 29/04 (2006.01)

(52) US. CL
CPCcccue. GO6F 12/02 (2013.01); GOGF 11/261

(2013.01); GOG6F 12/0253 (2013.01); G11C
29/02 (2013.01); G1IC 29/10 (2013.01); G11C
29/44 (2013.01); GO6F 11/106 (2013.01);
GO6F 11/26 (2013.01); GOGF 11/263
(2013.01); GOGF 2212/1032 (2013.01); GO6F
2212/1044 (2013.01); G11C 11/41 (2013.01);
G1IC 2029/0409 (2013.01)

[il]

820

830

CORRECT ERRORS
DURING SGRUB

INJECT ERROR ON
WRITE OPERATION
PERFORM TWO-PASS
SCRUB OPERATION

DETECT ERRORS DURING
SCRUB OPERATION

(58) Field of Classification Search

CPC GO6F 11/106; GO6F 11/26; GO6F 11/261;
GO6F 11/263; GOGF 2211/1088; GOGF
2211/4062; GOGF 2212/1032; GOG6F
2212/1044; G11C 29/08; G11C 29/10;
HO3M 2201/657; HO3M 13/01;, HO3M
13/015

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,711,703 B2 3/2004 MacLaren et al.
6,832,340 B2 12/2004 Larson et al.
7,263,631 B2 8/2007 VanBuren

2007/0094569 Al 4/2007 Thayer et al.

(Continued)

OTHER PUBLICATIONS

List of IBM Patents or Patent Applications Treated As Related
(Appendix P), Filed Aug. 11, 2015, 2 pages.
(Continued)

Primary Examiner — Albert Decady

Assistant Examiner — Christian Dorman

(74) Attorney, Agent, or Firm — Cantor Colburn LLP;
Margaret McNamara

(57) ABSTRACT

Embodiments relate to performing a memory scrubbing
operation that includes injecting an error on a write opera-
tion associated with a memory address. One or more errors
are detected during a two-pass scrub operation on the
memory address. Based on a result of the two-pass scrub
operation, one or more of a hard error counter associated
with the memory address and a soft error counter associated
with the memory address is selected. The one or more
selected counters are updated based on the result of the
two-pass scrub operation.

13 Claims, 7 Drawing Sheets

RE-NJECT ERRORS
DURING SCRUB

655

650

670

RE-FETCH DATA

DETERMINE SCRUB

SELECT HARD/SOFTIBOTH ERROR
COUNTERS BASED ON SCRUB
RESULT

UPDATED SELECTED ERROR
COUNTERS BASED ON SCRUB
RESULT

US 9,459,997 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2012/0266033 Al* 10/2012 Gold et al. GOGF 11/1052
714/718

5/2013 Kalyanasundharam
GOGF 11/1064
714/703

2013/0139008 Al*

OTHER PUBLICATIONS

Lawrence D. Curley, et al., Pending U.S. Appl. No. 14/823,012
entitled “Error Injection and Error Counting During Memory Scrub-
bing Operation” filed with the U.S. Patent and Trademark Office on
Aug. 11, 2015.

* cited by examiner

U.S. Patent Oct. 4, 2016 Sheet 1 of 7 US 9,459,997 B2

FIG. 1 , -
" LT T T T T T T T 11
MEMORY 157
100 CONTROLLER C T 1 1T T T T T 1T 14
\ — 15 [130]
ENOIe 165 120
T T T T T T 1T T 1%
170 157
C T T T T T T T T1T¢
MARKING | 130] B
T 15 185 120
T B | A
e [e s
INJ. LOGIC 115 | 130 | B
1% 155 120
X I w , A
RAIM 1
MODULE 115 T I N N A N
150 | 130 | ~
L’
160 >\l N I o | A
115 T T T 1T [T T T 1«
| 130 | .

120

US 9,459,997 B2

Sheet 2 of 7

Oct. 4, 2016

U.S. Patent

062 %7
A f S
INIONG 8NY0S - V1Y (3LOFHH0D SNLYLS HOL34
eﬂ 09~ t i
— N 01907 4300030 993 NIV
642 §/ﬁ||> [ETANTA | A A
' gw AN itV A NV ANt IV At
it on BO00 |y] 3000 | 00 |+ 000 e 13008
Isomm\ T~F e Sh~d 0 SE~F 0@ SB~F o Sh~J
...... ST SIINAOW AHONIN
owﬂma/: sz~ sz~ 597~ c97~t
NI9OWD || N39O N39 Q40 N39 240 N9 049
\ 4 \ I \ A \ \ \ J\
Wy A Wy A Wy~ %0y A 9o
061 01907 NOLLIAMNI 404y
05— _4 J\ Iy X J\
W W/
N39O <
e Al [T 'l
WiV - X
N39 903
02—
I 062
iz VMOOLS

U.S. Patent Oct. 4, 2016 Sheet 3 of 7 US 9,459,997 B2

@ @ 335 ¢/
/“m FIG. 3
@

[N
’@‘ &

ZERO
3
@ INC ADDR
ADDR=
MAX

INC RANK
START ADDR

RELOAD RAN
START ADDR

375

US 9,459,997 B2

Sheet 4 of 7

Oct. 4, 2016

U.S. Patent

¥ ¥ ¥ v
NN S e TEN N
0" Y ¥ ¥
I 3 \ ¥ \||_
p4n4|¢4ng4 | z4ne4| 14084 04na4 p4nas|eanas|zanas| 14ngs|o4nas
A/o@ mmw\‘
| S S S S
\ Y Y o/ 061" ONNE - NY3LIvd
Y, vIva
s R S0 N
X SI0HINOD 09%
SaldLLY " NOLLOTMNI
v
e /o/g /
08 INION3 < 05
oS
- AR AN S
v
STOLS
0L} STH0LS
HOL34 P A viva
5991 ATWANTINIVIY Wy L A e

U.S. Patent Oct. 4, 2016 Sheet 5 of 7 US 9,459,997 B2

RANK A-1 RANK A

520 520

U.S. Patent

Oct. 4, 2016 Sheet 6 of 7

[START)

\

US 9,459,997 B2

600

640~

| _-650

610~ INJECT ERROR ON
WRITE OPERATION
Y
620~ PERFORM TWO-PASS
SCRUB OPERATION
¥
830~ DETECT ERRORS DURING
SCRUB OPERATION
l
\ ¥
CORRECT ERRORS RE-INJECT ERRORS
DURING SCRUB DURING SCRUB
| |
\
655~ RE-FETCH DATA
¥
560 DETERMINE SCRUB
™ RESULT
Y
- SELECT HARD/SOFT/ROTH ERROR
~J COUNTERS BASED ON SCRUB
RESULT
A 4
UPDATED SELECTED ERROR
B0~ COUNTERS BASED ON SCRUB
RESULT
\ 4
END

FIG. 6

U.S. Patent Oct. 4, 2016 Sheet 7 of 7 US 9,459,997 B2

COMPUTER
PROGRAM
PRODUCT 700

PROGRAM
INSTRUCTIONS
704

O

COMPUTER USABLE/READABLE
STORAGE MEDIUM
702

FIG. 7

US 9,459,997 B2

1
ERROR INJECTION AND ERROR
COUNTING DURING MEMORY SCRUBBING
OPERATIONS

BACKGROUND

The present invention relates generally to memory sys-
tems, and more specifically, to scrubbing of memory sys-
tems.

Dynamic random access memories (DRAMs) experience
occasional errors during memory reads and writes, both
correctable (soft) errors and uncorrectable (hard) errors.
Memory systems using DRAMs include hardware such as
symbol or device-based error correcting code (ECC) cir-
cuitry, memory mirroring, redundant array of independent
memory (RAIM) ECC, scrubbing, marking, sparing, and
retries. When scrubbing and/or marking are implemented,
counters are often utilized to record detected errors and
determine the type of error encountered.

Scrubbing and marking hardware is often tested using
verification models. However, it is difficult to model all the
code paths so it may be more desirable to test the final
hardware and software together to test for defects. Even so,
it may not be practical to build hardware that will contain all
possible device failures. Therefore, programmable error
injection hardware can be used to cover these error sce-
narios. To insert injection hardware at the DRAMs or dual
in-line memory modules (DIMMSs) or buffer chips can be
expensive. Also, in a RAIM type system, each component
(e.g. buffer chip or DRAMs) has no information about first
or second scrub passes as well as data types. On the other
hand, the memory controller and/or host processor include
ECC and cyclic redundancy check (CRC) features, as well
as asynchronous paths which often hinder the ability to
mimic a soft versus hard error.

SUMMARY

Embodiments include methods, systems, and computer
program products for performing a memory scrubbing
operation that includes injecting an error on a write opera-
tion associated with a memory address. One or more errors
are detected during a two-pass scrub operation on the
memory address. Based on a result of the two-pass scrub
operation, one or more of a hard error counter associated
with the memory address and a soft error counter associated
with the memory address are selected. The one or more
selected counters are updated based on the result of the
two-pass scrub operation.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The subject matter which is regarded as embodiments is
particularly pointed out and distinctly claimed in the claims
at the conclusion of the specification. The forgoing and other
features, and advantages of the embodiments are apparent
from the following detailed description taken in conjunction
with the accompanying drawings in which:

FIG. 1 depicts a memory system in accordance with an
embodiment;

FIG. 2 depicts block diagram of store and fetch paths in
accordance with an embodiment;

FIG. 3 depicts a state diagram of a memory scrub process
in accordance with an embodiment;

FIG. 4 depicts another block diagram of a memory system
in accordance with an embodiment;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 5 depicts a timeline of an example error injection
scenario in accordance with an embodiment;

FIG. 6 depicts a flow chart of a memory scrub process in
accordance with an embodiment; and

FIG. 7 depicts a computer-readable medium according to
an embodiment.

DETAILED DESCRIPTION

As noted above, contemporary memory systems may
detect and count errors during a memory scrub process, and
then use these counts to mark defective memory modules.
While some contemporary memory systems distinguish
between counts of hard errors and counts of soft errors, these
systems lack a comprehensive error injection scheme to
allow for hard and soft error scenarios in an otherwise clean
system. Some contemporary systems that do allow for
device error injections often miss opportunities to inject on
various data types and on specific ranks. Described herein
are embodiments of a two-pass scrub (fetch followed by
conditional store) that updates counts for soft, hard, and/or
intermittent errors. The type of errors recorded can be
programmed into the memory scrub engine. Contempora-
neous two-pass scrubs put the system in a quiescent state so
that memory operations are stalled in order to maintain data
coherency between fetches and stores, in light of other
fetches and stores that are also occurring. Embodiments of
the scrub operation described herein use priority logic and
address locking to maintain coherency without putting the
system in a quiescent state. Embodiments of the scrub
operation described herein also allow the scrub engine to be
stopped in a controlled manner.

As noted above, diagnostics that test all code paths in the
memory repair subsystem are desirable. Contemporaneous
systems use error injection to test these code paths, but do
so only on a memory fetch or a memory store, not on a
fetch-store or fetch-store-fetch. Contemporaneous systems
also do not inject a combination of hard and soft errors,
which makes testing error count thresholds cumbersome.
Disclosed herein are embodiments of error injection logic
which mimic various device failure mechanisms. Various
embodiments use a variety of programmable selection
including data types or memory domains (e.g. data vs. key),
ranks, and re-injection (via primary and secondary denota-
tion), thus allowing a wide variety of error injections to be
configured. For example, the injection can be performed on
specific operation types (e.g. a scrub store, an alter com-
mand, a selftest store, or other store). As another example,
limits on scrub store and/or scrub write-back can be set. As
yet another example, the injection can be selectively per-
formed on a data store or on a key store. As yet another
example, errors can be injected by rank, by chip, or by
quarter-line. Before describing details of embodiments of
the memory scrub and injection processes, a brief overview
of how these processes fit into overall memory operation
will now be provided.

Turning now to FIG. 1, a block diagram of a memory
system 100 in accordance with an embodiment is generally
shown. The memory system 100 includes a memory con-
troller 110 in communication with a plurality of memory
modules 120 via memory interface buses 115. In this
example embodiment, the modules are dual inline memory
modules (DIMMs), but the techniques disclosed herein are
also applicable to other types of memory modules. Each
memory module 120 includes a memory buffer device 130
and memory devices 140. The memory controller 110 logi-
cally aggregates the buses 115 so that the buses 115 operate

US 9,459,997 B2

3

together in unison to support a single independent access
request from the memory controller 110. Handling this
single independent access request involves data and error
detection/correction information that is distributed or
“striped” across the memory interface buses 115 and asso-
ciated memory devices 140. This striping or distribution
function is performed by a RAIM module 150.

The memory devices 140 (sometimes referred to as chips
or dies) on a memory module 120 are arranged in ranks 155,
157. In this example, a first rank 155 includes nine memory
devices 140 and a second rank 157 includes nine memory
devices 140. As shown in FIG. 1, a total of 45 memory
devices 140 are striped across memory modules 120 for a
given rank (155 or 157). Of the 45 chips accessed per rank,
32 represent data, 4 represent ECC/check bits, and 9 repre-
sent RAIM parity. This reconstruction may be referred to as
error correction. The memory controller 110 includes RAIM
ECC module 160, memory scrub engine 170, marking logic
180, and error injection logic 190 to facilitate memory
striping, scrubbing, marking, and error injection processes.
These processes will be described in further detail below.

FIG. 2 illustrates a block diagram of RAIM store and
fetch paths that implement both ECC and channel CRC in an
embodiment. In an embodiment, the store path is imple-
mented by hardware and/or software located on the memory
controller 110. In addition, the store path may be imple-
mented by hardware and/or software instructions located on
a memory module 120 (e.g., in a hub device on the memory
module). The RAIM configuration depicted in FIG. 2, which
includes a memory channel that is dedicated to storing parity
information, has some similarities to a RAID 3 configuration
(i.e., striped disks with dedicated parity). However, a RAIM
ECC code may be implemented that includes additional
checks that are stored that allow for functionality well
beyond the RAID 3 capabilities. As depicted in FIG. 2, data
from the five channels are combined in a way that protects
data against loss of any one memory channel (e.g., a
memory module 120).

In the RAIM store path depicted in FIG. 2, the ECC
generator 210 receives store data 220 and outputs four
groupings of channel data 230 that include ECC check bits.
The channel data 230 are input to error injection logic 190
and are also input to a RAIM parity generator 240 that
outputs RAIM parity bits as channel data 250. The channel
data 250 is also input to the error injection logic 190. The
combination of the ECC checkbits and the RAIM parity bits
described above are the overall check bits of the RAIM
ECC. The error injection logic 190 provides outputs 255,
which may include injected errors, on all five channels to
feed to individual CRC generators 260. The CRC generators
260 then generate CRC bits for the channel data. Output 265
from the CRC generators 260, which includes CRC and data
bits, are then output to a downstream portion of bus (or
channel), such as bus 115 in FIG. 1, for transmission to the
memory modules 120. As shown in FIG. 2, the data being
stored on the memory modules 120 are supplemented by
ECC. In an embodiment, the CRC bits are used for bus
protection and are not stored.

In an embodiment, the fetch path is implemented by
hardware and/or software located on the memory controller
110. In addition, the fetch path may be implemented by
hardware and/or software instructions located on a memory
module 120 (e.g., in a hub device on the memory module).
As shown in FIG. 2, the RAIM fetch path includes receiving
data 275 on an upstream bus, such as bus 115 in FIG. 1, from
the memory modules 120. In an embodiment, the received
data 275 includes data bits, ECC bits and CRC bits (gener-

10

15

20

25

30

35

40

45

50

55

60

65

4

ated for example, by the memory modules 120). CRC
detectors 270 are utilized to detect a channel error, and to
temporarily mark a failing channel. Output from the CRC
detectors 270 are copies of the upstream channel data 278,
which include data and ECC bits fetched back from the
memory modules 120.

The CRC detectors 270 also provide an indication 280, to
the marking logic 180, of which channels are in error. The
marking logic 180 generates marking data 285 indicating
which channels and memory chips (i.e. devices) are marked.
In an embodiment, the marking logic 180 stores a vector of
data indicating which, if any of the memory devices 140 in
the given rank have been marked.

In addition to the error indication from the CRC detectors
270, the marking logic 180 also receives data generated by
the memory scrub engine 170. The memory scrub engine
170 is executed on a periodic basis to verify the integrity of
the data in the memory devices located on the memory
modules 120. The memory scrub engine 170 will be
described in more detail below. In one embodiment, the
output from memory scrub engine 170 is stored in a table
that is accessed by the marking logic 180. In another
embodiment, software is used to analyze the results of the
scrub engine 170 in order to load marks into the marking
logic 180.

The channel data 278 and the marking data 285 are input
to the RAIM ECC decoder logic 160, where the channel data
278 comprised of five interfaces from memory modules 120
are analyzed for errors which may be detected and corrected
using the RAIM ECC along with the marking data 285
received from the marking logic 180. Outputs from the
RAIM ECC decoder logic 160 are the corrected data 290 (in
this example 64 bytes of fetched data) and a fetch status 295.
Both the corrected data 290 and the fetch status 295 feed into
the scrub engine 170, as well as feeding into other data
destinations in the system such as a cache (not shown).

Having provided an overview of the memory system 100,
the memory scrubbing and error injection processes will
now be described in more detail. Turning now to FIG. 3, a
state diagram of a scrub process performed by the scrub state
machine 300 is generally shown. The scrub state machine
300 begins from an idle state 305 and transitions to a load
state 310, at which time error counters are reset and starting
and ending memory addresses are loaded from configuration
registers. In some embodiments, starting and ending ranks
are provided. The scrub state machine 300 then proceeds to
a fetch state 315, at which time the current address (initially,
the starting address) is presented to a priority logic module
which checks that the fetch address is not currently in use by
the memory system 100. In some embodiments, the priority
logic compares the current fetch address to a list of out-
standing fetches/stores and stalls the scrub state machine
300 until that address is free. At that time, the priority logic
gives the scrub state machine 300 high priority to use that
address, and locks that address out from all other requesters.

Having been given access to the fetch address by the
priority logic, the scrub state machine 300 performs the fetch
and determines whether or not the fetch resulted in an error.
This first fetch may be referred to herein as a “patrol fetch”.
If the patrol fetch did not result in an error, the scrub state
machine 300 transitions to the pass done state 320 (de-
scribed in further detail below). If the patrol fetch resulted
in an error, some embodiments of the scrub state machine
300 increment an indiscriminate error counter (i.e., error is
either hard or soft).

Having received an error on the patrol fetch, the scrub
state machine 300 transitions to a store state 325. In the store

US 9,459,997 B2

5

state 325, the scrub state machine 300 performs a store back
to the fetch address in order to correct the data back into the
fetch location. While this example embodiment of FIG. 3
shows the store-back as being conditional on the results of
the patrol fetch, some embodiments of the scrub state
machine 300 have a configurable setting that forces a
store-back on the data, regardless of whether the patrol fetch
received clean or errored data. Other embodiments of the
scrub state machine 300 have a configurable setting so that
data is not stored back, even if the patrol fetch received data
with RAIM correctable errors.

When the store is complete, the scrub state machine 300
transitions to a re-fetch state 330, where the data is read from
the read address a second time and the scrub state machine
300 determines whether an error occurred on this second
fetch. While this example embodiment of FIG. 3 shows the
re-fetch as being conditional on the results of the patrol
fetch, some embodiments of the scrub state machine 300
have a configurable setting that forces a re-fetch on the data,
regardless of whether the patrol fetch received clean or
RAIM correctable data. Other embodiments of the scrub
state machine 300 have a configurable setting so that a
re-fetch does not follow the store-back.

If the error persists on the re-fetch, this indicates that the
error is a hard error. If the error was not present on the
re-fetch, this indicates that the error is a soft error. The scrub
state machine 300 increments one or more error counters to
capture this information. In an embodiment, separate hard
and soft error counters are present in the memory controller
110.

In an embodiment, configuration registers associated with
the scrub state machine 300 determine which error counters
are incremented, so that the scrub state machine 300 can be
programmed to count hard errors, soft errors, intermittent
errors, or any combination of these error types. One example
of counter behavior based on fetch results is shown in Table
1:

TABLE 1

Soft Intermittent
Patrol Fetch Second Fetch Hard Counter Counter Counter

0 0 no increment no no increment
increment

0 1 no increment increment increment

1 0 no increment increment no increment

1 1 increment no no increment
increment

Some embodiments of the scrub state machine 300 incre-
ment a chip-specific counter for the target rank. For
example, the RAIM ECC module 160 may maintain a
DRAM correction vector which indicates which DRAMs
had at least one bit corrected, and scrub state machine 300
uses this vector to index into a plurality of unique counters,
one per chip in the rank. In some embodiments, this DRAM
correction vector is stored for future use in a register.

Having finished the patrol fetch and possibly a store-back
and a re-fetch, the scrub state machine 300 exits from the
current state (fetch state 315, store state 325, re-fetch state
330) by releasing the lock on the fetch address and transi-
tioning to the pass done state 320. In the pass done state 320,
the scrub state machine 300 checks for a stop command, and
if present, halts the scrub process by transitioning to a stop
state 335. If no stop command was issued, the scrub state
machine 300 transitions to a check for millicode pause state
340. If the millicode did not issue a pause signal, the scrub

20

25

30

40

45

6

state machine 300 transitions to a gap counter state 350. If
the millicode did issue a pause signal, the scrub state
machine 300 transitions to the millicode pause state 345,
where the engine 300 pauses to allow for a test operation
conflict or other millicode-initiated operation.

Upon receiving a resume signal from the millicode, the
scrub state machine 300 then transitions from the millicode
pause state 345 into the gap counter state 345. Once the
scrub state machine enters the gap counter state 345, the gap
counter is loaded with a predetermined value and counts
down to zero, thus waiting for a predefined time period
before transitioning to a check maximum count state 355. In
the check maximum count state 355, the scrub state machine
300 compares a command counter to a maximum value. If
the command counter has reached the maximum value, the
scrub is finished and the scrub state machine 300 transitions
back to the idle state 305.

Otherwise the scrub state machine 300 transitions to a
check max address state 360, where the scrub state machine
300 determines whether all the addresses in the memory
region specified during the load state 310 have been
scrubbed. If the address counter has not yet reached its
maximum value, the scrub state machine 300 transitions into
a state 362 to increment the fetch address, then returns to the
fetch state 315 to scrub the next memory address. If all
addresses have been scrubbed, the scrub state machine 300
transitions to a rank loop state 365, and determines whether
the scrub process has been configured to iterate over a single
memory rank. If so, the scrub state machine 300 reloads the
starting fetch address and returns to the fetch state 315.

If not, the scrub state machine 300 transitions to a check
maximum rank state 370, and determines whether all ranks
specified during the load state 310 have been scrubbed. If all
ranks have been scrubbed, the scrub is complete and the
scrub state machine 300 transitions back to the idle state
305. Otherwise, the scrub state machine 300 transitions to a
reload state 375, where the rank is incremented and the
starting fetch address is reloaded. The scrub state machine
300 returns to the fetch state 315 to scrub the next memory
address.

Turning now to FIG. 4, another block diagram of memory
system 100 is generally shown. Where FIG. 2 focused on the
data paths that allow for error detection via ECC and CRC,
FIG. 4 focuses instead on the interaction between the error
injection logic 190, the memory scrub engine 170, and the
RAIM ECC module 160. A multiplexer 405 selects among
various data inputs. Input provided by the memory scrub
engine 170 is referred to as a secondary store input 410, and
mainline data store 415 and key stores 420 are referred to as
primary store inputs 425, 430. Various store attributes 440
such as store type, primary/secondary, rank, and key/data
type are properties associated with stores. For example, a
scrub store-back from the memory scrub engine 170 is
considered a secondary store. The address being stored
determines the rank as well as whether the transaction
involves a key store or a data store. Similarly, the key stores
420 are considered primary stores in the key address region,
but the address is still used to determine the store rank.

The input selected by the multiplexer 405 is provided as
the data input for the error injection logic 190. A configu-
ration register 450 provides injection controls to control the
operation of the error injection logic 190, which then injects
based on the configuration register 450 and the store attri-
butes 440. Also provided as input to the error injection logic
190 are data pattern controls 460 indicating which chips and
associated data bits are injected.

US 9,459,997 B2

7

The outputs of the error injection logic 190 are stored in
output buffer 465 for asynchronous access by the memory
modules 120. In an embodiment, ECC generator 210 occurs
after the multiplexer 405 and before the error injection logic
190. In another embodiment, ECC generator 210 occurs
before the multiplexer 405. In an embodiment, the CRC
generation occurs any time after the error injection logic
190. With CRC generation after injection, CRC detection on
the interface looks clean, thus avoiding false recovery
actions due to bad CRCs caused by the error injection itself.
Such placement facilitates injecting actual data bits that
appear to occur on the memory devices 140 on the memory
modules 120, which is one goal of the error injection logic
190 in some embodiments.

As described earlier in connection with FIG. 2, fetches
from memory modules 120 are provided to the memory
scrub engine 170. Here, input buffers 470 are used so this
data can be asynchronously accessed by the memory scrub
engine 170. The RAIM ECC module 160 provides status
information 475 to the memory scrub engine 170, indicating
which chips have errors. Finally, at the end of the fetch path,
the RAIM ECC module 160 provides corrected data 480 to
the mainline and key fetch logic 485.

Table 2 describes an example of a configuration register
that controls the error injection logic 190.

TABLE 2

10

15

20

8
TABLE 3

Bits Name Description

9 MC_MEM_ ERRINJ_CHO_CSEL Chip Select for chips
in Channel 0 DRAM
Chip Select for chips
in Channel 1 DRAM
Chip Select for chips
in Channel 2 DRAM
Chip Select for chips
in Channel 3 DRAM
Chip Select for chips
in Channel 4 DRAM
Quarter-line Select
enable

Quarter-line Select
Inject Bit 0:15

9 MC_MEM_ ERRINJ_CHI1_CSEL
9 MC_MEM_ERRINJ_CH2_ CSEL
9 MC_MEM__ERRINJ_CH3_CSEL
9 MC_MEM_ERRINJ_CH4 CSEL
1 MC_MEM__ERRINJ_QL_SEL_EN

2 MC_MEM_ERRINJ_QL_SEL
16 MC_MEM_ ERRINJ_INJECT

This configuration register thus allows selecting multiple
chips for simultaneous error injection across multiple chan-
nels. More specifically, multiple chips and channels can be
selected for simultaneous error injection. The same bits 0:15
will be selected for each chip/channel combination. In this
embodiment, bits 0:15 correspond to an ECC symbol that is
stored in 2 data beats within a single DRAM with an 8 bit
data interface. In some embodiments, the Inject Bit field
allows separate bits per channel or memory device rather

Bits Name

Description

1 MC_MEM_ ERRINJ__RANK_EN

1—compare rank

O—inject any/all ranks

n MC_MEM__ERRINJ__RANK_SEL
1 MC_MEM__ERRINJ_KEY_ EN

Select which of 2" ranks to inject
1—inject into key address domain

0—do not inject into key address domain

1 MC_MEM_ ERRINJ__DATA_EN

1—inject into data address domain

0—do not inject into data address domain

4 MC_MEM__ERRINJ_PRIMARY_STORE_TYPE

bit 0: 1—inject on Alter command;

(Alter is special command used for targeted
quiesce injection by code)

bit 1: 1—inject on Selftest Store;

bit 2: 1—inject on Scrub Store;

bit 3: 1—inject on stores not selected by bits 0:2

MC_MEM_ ERRINJ_PRI__LIMIT

Injection limit where O—no limit, otherwise

injection limit is m

1 MC_MEM__ERRINJ__SCRUBSTR_EN

soft to hard)

P MC_MEM__ERRINJ_SEC_ LIMIT

1—Inject on the Scrub Store command (force

Used for scrub write-back

Injection limit where O—no limit, otherwise
injection limit is p

This configuration register thus allows injection for only
a particular store type, or injection for only a particular
memory domain, or injection for only a particular memory
rank. If, for example, the scrub engine is configured to do a
store-back after detecting a correctable error on a first fetch,
then a particular number of hard errors can be modeled by
setting MC_MEM_ERRINJ_SCRUBSTR_EN along with a
count in MC_MEM_ERRINJ_SEC_LIMIT. A primary store
type can then be chosen to inject a number of errors based
on a count in MC_MEM_ERRINJ_PRI_LIMIT, detected by
any non-scrub store during their normal store operations.
Scrub may not typically be chosen as a primary store type in
this mode. On the other hand, in an embodiment, setting
scrub as a primary store type may be particularly useful
when the scrub engine is configured to always do a store-
back, regardless of first fetch correctable error status.

Table 3 describes an embodiment of a configuration
register that supplies data pattern controls 460 used by the
error injection logic 190. In this embodiment, there are 9
channels per rank.

50

55

60

65

than the common inject bits shown in Table 3. In this
embodiment, a symbol size of 16 is utilized; other embodi-
ments utilize symbols of different sizes based, for example,
on implementation considerations.

Turning now to FIG. 5, a timeline 500 for an example
error injection scenario is generally shown. In this example,
a scrub operation is being performed, in the background, on
multiple memory ranks. A diagnostic is being performed to
verify the reporting of errors by the memory scrub engine
170. This diagnostic uses the error injection features of the
error injection logic 190. In this diagram, dashed line 510
denotes the ongoing (background) scrub process, and indi-
vidual memory fetches performed by the scrub process are
denoted with up arrows 520. In this example, the memory
scrub engine 170 processes memory addresses in a sequen-
tial manner through an entire rank, and then initiates another
scrub operation on the next rank.

As shown in FIG. 5, the fetch and store operations may be
initiated while a background scrub is occurring. In this

US 9,459,997 B2

9

example, a single store (denoted by down arrow 530) writes
to an address X in Rank A sometime before the memory
scrub engine 170 starts scrubbing Rank A. In this example,
the error injection logic 190 is configured to inject a single
correctable error on this primary store at an address within
Rank A.

At a later point in time, the memory scrub engine 170
proceeds to rank A and eventually fetches address X, as
denoted by oval 540. The memory scrub engine 170 detects
a correctable error, one caused by the earlier store to address
X by the error injection logic 190. The memory scrub engine
170 initiates a store-back to clean up the correctable error,
and then issues a re-fetch to determine if the error is hard or
soft.

In this example, the error injection logic 190 is configured
with a secondary error injection event. As a result of this
configuration, the memory scrub engine 170 performs a
store-back, thus re-injecting the error. Since the error was
re-injected, when the memory scrub engine 170 performs
the re-fetch on address X, it will see that the error is still
present and will count this as a hard error. The error injection
logic 190 thus allows many different scrub scenarios to be
performed and many code paths in the diagnostic to be
exercised.

Various embodiments of error injection logic 190 may
support a variety of other error injection behaviors and scrub
scenarios. For example, both primary and secondary coun-
ters can be set to perform multiple error injections. This
allows invocation of a threshold function for setting a chip
or a channel mark. As another example, a region within a
rank can be selected by specifying a primary store type that
targets a particular memory region (e.g., keys or data space).
As yet another example, store types by function can be
selected for injection. One example of a functional store type
is memory self-test operations during initial machine load
(IML).

Turning now to FIG. 6, a flow chart of a process 600 for
a memory scrub operation is generally shown. In an embodi-
ment, the process 600 is implemented in hardware by
memory scrub engine 170. In an embodiment, the process
600 is implemented in software in conjunction with special-
ized hardware. In an embodiment, the process 600 is imple-
mented in microcode or millicode. In an embodiment, the
process 600 is implemented in microcode or millicode in
conjunction with specialized hardware.

In block 610, an error is injected on a write operation. The
write operation is associated with a memory address. The
memory address is in turn associated with a memory module
and a rank.

Next, at block 620, a scrub fetch operation is initiated.
This can be a single patrol fetch for a one-pass scrub
fetch/conditional write-back operation or the first pass of a
two-pass scrub operation. At block 630, one or more errors
are detected during the scrub fetch operation on the memory
address.

Next, at block 640, some or all of the errors detected
during the scrub operation are corrected. At block 650, in a
parallel path, errors detected during the scrub operation are
re-injected. Both the error correction and the error re-
injection may be controlled by configuration registers as
described herein. At block 655, scrub engine 170, in an
embodiment, re-fetches the data from the previously stored
scrub address.

Next, at block 660, a result of the two-pass scrub opera-
tion is determined. The result of the first memory fetch may
indicate error or no error. The result of a re-fetch may
indicate error or no error. At block 670, one or more error

10

15

20

25

30

35

40

45

50

55

60

65

10

counters are selected based on the result of the two-pass
scrub operation. The combination of results from the patrol
fetch, store-back, and/or re-fetch indicates a soft error, a hard
error, or an intermittent error. Thus, depending on the result
of the scrub, a hard error counter, a soft error counter, or
both, may be selected. In an embodiment, an intermittent
counter may also be selected.

Next, at block 680, the selected counters are then updated
based on the result of the scrub operation. For example, as
discussed earlier in connection with FIG. 3, if an error
occurred the appropriate counter is incremented, else the
counter remains as is. A plurality of counters is utilized,
associated with memory modules and rank. Thus, the appro-
priate chip-specific and/or rank-specific counter is selected
according to the memory fetch address.

Technical effects and benefits include the ability to per-
form more thorough and controlled testing of code paths in
a memory repair subsystem.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms
as well, unless the context clearly indicates otherwise. It will
be further understood that the terms “comprises” and/or
“comprising,” when used in this specification, specify the
presence of stated features, integers, steps, operations, ele-
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, element components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the
invention and the practical application, and to enable others
of ordinary skill in the art to understand the invention for
various embodiments with various modifications as are
suited to the particular use contemplated.

The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

Referring now to FIG. 7, a computer program product 700
in accordance with an embodiment that includes a computer
readable storage medium 702 and program instructions 704
is generally shown. The present invention may be a system,
a method, and/or a computer program product. The com-
puter program product may include a computer readable
storage medium (or media) having computer readable pro-
gram instructions thereon for causing a processor to carry
out aspects of the present invention.

US 9,459,997 B2

11

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention

10

15

20

25

30

35

40

45

50

55

60

65

12

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

What is claimed is:

1. A computer program product for injecting errors during
a memory operation, the computer program product com-
prising:

a computer readable storage medium having program
instructions embodied therewith, the program instruc-
tions readable by a processing circuit to cause the
processing circuit to perform a method comprising:

injecting an error to test error count thresholds, the
injecting on a write operation associated with a
memory address;

detecting one or more errors during a two-pass scrub
operation on the memory address;

US 9,459,997 B2

13

selecting, based on a result of the two-pass scrub opera-
tion, one or more of a hard error counter associated
with the memory address and a soft error counter
associated with the memory address; and
updating the one or more selected counters based on the
result of the two-pass scrub operation.
2. The computer program product of claim 1, wherein the
method further comprises:
correcting the one or more errors detected during the
two-pass scrub operation.
3. The computer program product of claim 1, wherein the
method further comprises:
re-injecting the one or more errors detected during the
two-pass scrub operation.
4. The computer program product of claim 1, wherein the
method further comprises:
selecting one or more store types based on reading a field
in a configuration register; and
injecting the error only for the one or more selected store
types.
5. The computer program product of claim 1, wherein the
method further comprises:
selecting a memory domain based on reading a field in a
configuration register; and
injecting the error only for the selected memory domain.
6. The computer program product of claim 1, wherein the
method further comprises:
selecting one or more memory ranks based on reading a
field in a configuration register; and
injecting the error only for the one or more selected
memory ranks.
7. The computer program product of claim 1, wherein the
method further comprises:
setting an injection limit by reading a count field in a
configuration register; and
injecting a number of errors equal to the injection limit.
8. The computer program product of claim 1, wherein the
performing the two-pass scrub operation further includes
performing a patrol fetch at the memory address and per-
forming a store-back at the memory address, wherein the
injecting the error occurs during the store-back.

10

15

20

25

30

35

40

14

9. A memory system for performing a scrub operation, the
memory system comprising:
a memory controller; and
a plurality of memory modules in communication with the
memory controller;
the memory system configured to perform a method
comprising:
injecting an error to test error count thresholds, the
injecting on a write operation associated with a
memory address;
detecting one or more errors during a two-pass scrub
operation on the memory address;
selecting, based on a result of the two-pass scrub
operation, one or more of a hard error counter
associated with the memory address and a soft error
counter associated with the memory address; and
updating the one or more selected counters based on the
result of the two-pass scrub operation.
10. The memory system of claim 9, the method further
comprising:
selecting one or more store types based on reading a field
in a configuration register; and
injecting the error only for the one or more selected store
types.
11. The memory system of claim 9, the method further
comprising:
selecting a memory domain based on reading a field in a
configuration register; and
injecting the error only for the selected memory domain.
12. The memory system of claim 9, the method further
comprising:
selecting one or more memory ranks based on reading a
field in a configuration register; and
injecting the error only for the one or more selected
memory ranks.
13. The memory system of claim 9, the method further
comprising:
setting an injection limit by reading a count field in a
configuration register; and
injecting a number of errors equal to the injection limit.

#* #* #* #* #*

